
 
 

First View 

 

Volume 4, Number 4 November 2004 

 

Welcome to the Fall issue of First View. Our objective, as always, is to keep you informed of developments at First 

Choice Software, and to recount what we’ve been up to since the last issue. This issue will highlight a number of new 

product releases planned in upcoming months, as well as describe a number of new license, subscription, and hosted 

service options for acquiring First Choice’s innovative products.  

 

 

 

This issue of First View discusses: 

 

 From the CEO’s Desk: Gaining Momentum as Clarify Customers Adopt First Choice 

 Product News: Fall Releases Greatly Expand FCS Solutions 

 Technical Corner: Web Services for Clarify 

 Employee Profile: Chad Levert 

 Sales and Marketing News: New Options for Acquiring First Choice Products 

 

 

 

 

If you know of someone who might enjoy a copy of First View, please share it with them. Also, have them send an 

email to add-firstview@fchoice.com. Make sure they include their name, phone number, and email address. We will 

send them future editions of the newsletter. If you do not wish to receive future copies of First View, please send an 

email to remove-firstview@fchoice.com. Make sure your email address is either in the title or body of the email. We 

will remove you from our mailing list immediately. 

 

mailto:add-firstview@fchoice.com
mailto:remove-firstview@fchoice.com


First View, Vol. 4, Num. 4  Page 2 

From the CEO’s Desk: Gaining Momentum as Clarify Customers Adopt First Choice 
 

The first two quarters of 2004 resulted in a five-fold increase in revenues over the same two quarters in 2003, and as 

we wrapped up Q3 of 2004, year over year growth is showing continued significant growth. This momentum is 

attributable to one key factor: Clarify customers are adopting our web based solutions at an increasing rate as they 

discover the clear advantages First Choice offers over alternatives.  

 

Based on customer feedback, we enjoy three distinctive key differentiators: Financial, Time (resources), and 

Functionality.  

 

Financially we deliver solutions that are typically well below alternatives in terms of license price, cost 

substantially less to maintain over the life of the investment, and may be purchased with flexible terms, 

several of which require no additional capital expense or increases to current budgets. 

 

We have taken great pains to deliver a highly flexible, easy to use, and productive customization environment. 

With our automated tools to accelerate migration of existing customizations, our customers are in production 

at a fraction of the time and effort of other alternatives. Combine this with a solution that works on any 

version of Clarify and database currently installed, and our customers have found there is simply no quicker 

way to implement a web-based solution. 

 

Our web-based products are built on top of FCFL (soon to be FCFL.NET) that enables us to deliver 

performance equal to or better than existing applications and with scalability to meet the most rigorous 

enterprise requirements. Additionally, our web-based applications incorporate value-added enhancements 

and extensions we developed over the past 9 years and that markedly improve a large percentage of the 

“Classic Client” implementations. 

 

With the upcoming products described in this First View we fully expect customer adoption to continue to drive the 

momentum we have experienced over the last six quarters.  

 

 

Technical Corner: Web Services for Clarify 
 

In each issue of First View, the Technical Corner section offers tips, examples, and techniques we find useful. We 

include them, along with appropriate code examples, in the hope that you will find them useful as well. 

 

Callable Objects for Clarify - History 

For many years, we have heard many Clarify customers ask for a simple, generic, industry-standard mechanism to 

quickly make changes in Clarify – from ANY location, place, or program.  

 

Certainly there have been partial solutions to this problem. The first, most common solution was to write direct SQL 

to the database. The problems with this approach are many and varied. The largest problem of all is that this is a very 

low-level solution, and that requires a great deal of custom programming and knowledge of the Clarify data model. 

While this solution can be used for anything, for most customers it is not an acceptable approach. Also, it is not always 

easy to call on direct SQL – some environments simply do not provide good SQL support. 

 

Similarly, the C language API, eBusiness Framework (or CBOs), and ClearBasic from Clarify are simplistic solutions 

to the problem. And like direct SQL, they suffer from general applicability, and require too much manual coding and 

debugging. 

 

Perhaps the most comprehensive solution previously written to solve this problem involved high-level APIs from First 

Choice. These APIs were written in both ClearBasic and as COM objects in First Choice’s FCFL (First Choice 

Foundation Library) language. While these objects were easy to call from a COM/.NET environment, they were 

difficult to call from certain environments, including Java. 

 



First View, Vol. 4, Num. 4  Page 3 

Callable Objects – from Anywhere 

First Choice undertook the task of finding a good, general solution earlier this year. Our objective was to create a 

simple and quick mechanism that developers could use to query, insert, update, and delete data in Clarify, FROM 

ANY OTHER PROGRAM, INCLUDING ANY WEB PAGES ON ANY WEB SERVER!!! Not only that, but we 

wanted to make sure that both low-level and high-level operations were supported. 

 

What would such an environment mean to you? It would mean that you could easily query data from Clarify, and 

display it, for example, on your web page. Later on, you could call on an API to perform an operation in Clarify (for 

example, create a case, modify a contact, install a site_part, anything). And all of this could be performed with a set 

of simple web service calls that anyone could insert into their program or web pages, and in minutes. 

 

And while web services are fairly easy, in and of themselves, to call, we wanted to make the job even easier for those 

users calling our web services from either .NET or Java environments. For those users, we have created a Web Services 

Client. This client is a library of simple calls (either for Java or .NET), which greatly simplify calling the web services. 

It makes the web service calls trivial to make, presenting an FCFL-like and API-like interface that mimics what you 

would write in fcClient. 

 

The goal has been accomplished. First Choice is now shipping version 1.0 of the First Choice Web Services. These 

services are SOAP-compliant, and can be called from virtually any web environment you may have. If you have a 

web server running, for example, on WebLogic, WebSphere, iPlanet, Tomcat, Apache, or IIS – you can have Clarify 

functionality running on your website! 

 

The rest of this article presents an overview of the new, currently shipping First Choice Web Services product. Using 

this product, you can create programs, interfaces, customizations, and web pages that interact with Clarify in less time 

than you ever imagined possible. 

 

A Web Service Architecture 

The First Choice Web Services sit on top of several underlying components: The Clarify database, FCFL, and 

(optionally) the First Choice APIs. The Web Services is a discrete component that installs on a machine on the network. 

It does not have to be on a machine running FCFL and the database although we recommend it, but must be one that 

is running the IIS web server. After this, any other machine that can address the machine containing the Web Services 

via the HTTP protocol can access the Web Services. 

 

For more detailed information about the architecture of the First Choice Web Services, please contact First Choice for 

the Web Services user guide. 

 

Using the Web Services 

The first step involved in using the First Choice Web Services is to install them. There are two installers you may 

choose to use: one for Web Services, and one for the web service client. The installers are automated. After you select 

a few details (installation directory, for example), all of the necessary software is installed. For more details on 

installation, see the First Choice Web Services installation guide. 

 

Once the installation is completed, you will have the First Choice Web Services installed on your machine, and 

published as available on your network. 

 

The next step of the process is, just use the Web Services. As mentioned above, you can access them simply by building 

up the proper XML message string, and passing it to the URL for the Web Services. This process is described, in 

detail, in the Web Services user guide. 

 

Since most users, however, will be programming either with .NET or Java, it makes more sense to describe the process 

of accessing web services via the web service client. For the purposes of this article, we will show you example code 

written in C#, and executed in an ASP.NET web page. But the same process can be followed for Java-based programs. 

 

To create the web service client object, you would place the following two lines of code in your web page: 

 
fCWSClient fcWSClient = new FCWSClient(); 

fcWSClient.ResumeSessionOrLogin( sessionID, username, password ); 



First View, Vol. 4, Num. 4  Page 4 

 

The first line is responsible for declaring and creating the new web service client. The second line is responsible for 

logging in to the Web Services, or reconnecting to it, in case you have already created a connection to it. 

 

When you are finished using the web service client, you can simply close it. For example: 

 
fcWSClient.Logout(); 

 

That’s it! Between the first two lines and the final logout line, you would place your web service calls to access Clarify. 

 

Querying Data with a Web Service 

It’s very easy to query data using the web service client interface. In fact, for those of you who either have used 

ClearBasic or First Choice’s FCFL language, it will look very familiar. 

 

Simply put, you use ClearBasic-like constructs to set up and execute your queries. Primitives such as 

TraverseFromParent, AppendFilter, and AppendSort are all supported. The arguments are very similar to those you 

already know from FCFL and ClearBasic. 

 

The following is a simple example of querying for a set of cases, and then finding the site and contact for each one. 

In reality you might choose to use a view for this purpose. But it was a quick, simple, and easily understood example 

for this article. 

 
FCWSGenericQueryClient caseGeneric = fcWSClient.CreateQueryGeneric("case"); 

caseGeneric.DataFields = "objid, id_number, title, 

case_reporter2site,case_reporter2contact"; 

caseGeneric.AppendFilter("id_number", ">=", "55"); 

caseGeneric.AppendFilter("id_number", "<=", "66"); 

caseGeneric.AppendSort("id_number"); 

  

FCWSGenericQueryClient siteGeneric = caseGeneric.TraverseFromParent("site", 

"case_reporter2site"); 

siteGeneric.DataFields = 

"objid,site_id,name,status,cust_billaddr2address,cust_shipaddr2address"; 

  

FCWSGenericQueryClient contactGeneric = 

caseGeneric.TraverseFromParent("contact", "case_reporter2contact"); 

contactGeneric.DataFields = "first_name,last_name"; 

  

DataSet ds = caseGeneric.Query(); 

 

The first section of code creates a new generic object. Generic objects (like in FCFL) represent one table or view in 

the Clarify system. In this situation, they represent the case table. The DataFields method allows you to decide which 

fields (and/or relations) to return for each row. The AppendFilters allow you to select which rows the query returns, 

and AppendSorts will perform sorting on the results. 

 

The query is then set up to query a child generic object. Since we perform a TraverseFromParent, we will find the 

related row(s) in the child generic for each parent (case) generic found. We set the data fields so as to only return a 

few key fields for the site. 

 

The code then does a second TraverseFromParent to get the contact for each case found. 

 

Finally, the case generic is queried, and a DataSet is returned. When you query a generic object, you also automatically 

query any of the children generics underneath it. In this situation, all of the desired cases are found, as are the sites 

and contacts for each of those cases. 

 

A few other important points need to be made with respect to querying generics that were not illustrated with the case 

above. First, the parent/child hierarchy can be as deep and complex as you need. You may perform a 

TraverseFromParent on any level of the query, as needed. You may query any relation cardinality (type) at all that 

you need. This includes OTO and MTM relations. 



First View, Vol. 4, Num. 4  Page 5 

 

Also, you may use the concept of a Bulk to query more than one unrelated object at a time. You are not restricted to 

parent/child traversals only. For example, you could query for cases for a particular customer, as well as configuration 

items created last week all in one Bulk. Clearly these items are not related at all. 

 

Once the query has been performed, an XML-format string will be returned with the results of the query. This XML 

can be traversed and the results displayed as you see fit. The following XML, for example, might be returned from 

the query above: 

 
<?xml version="1.0" encoding="utf-8"?> 

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xmlns:xsd="http://www.w3.org/2001/XMLSchema" 

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 

  <soap:Body> 

    <QueryResponse xmlns="http://www.fchoice.com/schemas/fcgenericws_v1"> 

      <QueryResult> 

        <NewDataSet> 

          <case objid="268435457"id_number="1" title="This is a test case1 

title."      

                case_reporter2site="268435463" 

case_reporter2contact="268435466">             

            <site objid="268435463" site_id="2" name="Henry's Site" status="0"   

                cust_billaddr2address="268435463" 

cust_shipaddr2address="268435463" /> 

                 <contact first_name="Henry" last_name="Smith" /> 

          </case> 

          <case objid="268435458" id_number="2" title="This is a test case2 

title."  

     case_reporter2site="268435464" case_reporter2contact="268435464"> 

            <site objid="268435464" site_id="3" name="MacroSoft" status="0"  

               cust_billaddr2address="268435464" 

cust_shipaddr2address="268435464" /> 

            <contact first_name="Rae" last_name="Zor" /> 

          </case> 

          <case objid="268435459" id_number="3" title="This is a test case3 

title."  

                case_reporter2site="268435462" 

case_reporter2contact="268435462"> 

            <site objid="268435462" site_id="1" name="Joe's Site" status="0"  

                  cust_billaddr2address="268435462" 

cust_shipaddr2address="268435462" /> 

            <contact first_name="Joseph" last_name="HornBlower" /> 

          </case> 

          <case objid="268435460" id_number="4" title="The Title for this Case"  

                case_reporter2site="268435463" 

case_reporter2contact="268435463"> 

            <site objid="268435463" site_id="2" name="Henry's Site" status="0"  

                cust_billaddr2address="268435463" 

cust_shipaddr2address="268435463" /> 

            <contact first_name="Marco" last_name="Polo" /> 

          </case> 

        </NewDataSet> 

      </QueryResult> 

    </QueryResponse> 

  </soap:Body> 

</soap:Envelope> 

 

Note that four cases were returned, and each one has one contact and one site. You can use any one of many tools 

currently available for parsing XML. 

 

However, if you are using either .NET or Java (via the web service client), you do not even have to think about the 

XML. There is a much simpler way to proceed. If you are using the client, the XML returned is automatically placed 



First View, Vol. 4, Num. 4  Page 6 

into a data structure for you. In .NET it is put back into a DataSet object, which you can traverse with standard 

ADO.NET primitives such as ForEach. 

 

High-Level Operations with a Web Service 

First Choice Web Services truly shine when it comes to complex, high-level operations. All of the FCFL API toolkits 

(containing over 500 different Clarify operations) are available to you as web service calls. Virtually anything you 

can do in the thick client GUI (or in First Choice’s fcClient thin client) can be performed via Web Services. 

 

Again, using the .NET client format, the following code (after the web service is created) will create a new case in the 

Clarify system: 

 
result = this.fcWSClient.FCCSToolKit.create_case( 

siteID.Text, 

firstName.Text, 

lastName.Text, 

phoneNumber.Text, 

"", "", "", "", 0, "", 

title.Text, 

caseType.SelectedValue, 

"", "", "",  

phoneLog.Text,  

"", 

DateTime.Now.ToString(), 

DateTime.Now.ToString(), 

"", false, "", 0, "", 0, "", "", "", "", "", ""); 

  

It is important to understand that the Web Service APIs have exactly the same arguments and calling semantics as the 

FCFL-based APIs. These are full-featured APIs that can perform all of the required operations (all records, fields, 

relations are properly created, updated, and set). They validate all required data (returning architected return codes if 

anything is not correct), and perform all of their work in a single unit of work (to maintain data integrity). 

 

The web service environment at First Choice contains a code generator that actually reads the APIs from the source 

files, and automatically generates the web service interfaces that you will call. This means that if APIs are modified, 

or new APIs are added, it is trivial to update the interface, and call on these APIs as part of Web Services. 

 

In any event, it is very easy to be able to call on the high-level APIs and use them. Virtually any operation you might 

perform (Support, Quality, Logistics, Sales, Contract, Depot Repair, or Field Operations) is available. In addition, 

many administrative functions (both Policies & Customers Operations, as well as Product Manager) are also provided. 

For example, you could augment your “Create Employee” web page to also create the employee as a user in the Clarify 

system – all with fewer than 10 lines of code!! 

 

Inserting/Updating/Deleting Data with a Web Service 

It is also possible to insert, delete, update, and relate data rows using the First Choice Web Services. While this is not 

a very common operation (it’s much easier to use a high-level API!), it is sometimes a requirement when you have 

data that does not map to an existing API. 

 

As with querying, there are two ways to do this. One is to construct an XML string with the proper tags and attributes. 

Using the XML, you can perform these low-level operations. The string looks a lot like Data Exchange or DIET files.  

 

However, like the querying example above, you can also use the web service client to easily insert, update, delete, and 

relate records. For example, the following web service code creates new contact, contact_role, site, and address 

records, and relates the properly. Remember, this can be performed from virtually any environment!! 

 
// Create a new FCWSGenericUpdateClient to build update query 

FCWSGenericUpdateClient generic = fcWSClient.CreateUpdateQueryGeneric(); 

 

// Create modify items for the tables we want to insert new records 

InsertItem contactInsert = generic.InsertRecord("contactInsert", "contact"); 



First View, Vol. 4, Num. 4  Page 7 

InsertItem contactRoleInsert = generic.InsertRecord("contactRoleInsert", 

"contact_role"); 

InsertItem siteInsert = generic.InsertRecord("siteInsert", "site"); 

InsertItem addressInsert = generic.InsertRecord("addressInsert", "address"); 

 

// Create a item for referencing an existing record 

ReferenceItem stateProvRef = generic.ReferenceRecord("stateProvRef", 

"state_prov"); 

 

// Append fields that we want to insert values into 

contactInsert.SetField("first_name", firstName); 

contactInsert.SetField("last_name", lastName); 

contactInsert.SetField("phone", phoneNumber); 

 

// Relate this inserted record to another ModifyItem 

contactInsert.RelateRecords("contact2contact_role", contactRoleInsert); 

 

// Append fields that we want to insert values into 

contactRoleInsert.SetField("role_name", "Default"); 

 

// Relate this inserted record to another ModifyItem 

contactRoleInsert.RelateRecords("contact_role2site", siteInsert); 

 

// Get next Site ID from web service 

string siteID = fcWSClient.FCSession.GetNextNumScheme("Site ID"); 

 

// Append fields that we want to insert values into 

siteInsert.SetField("site_id",  siteID); 

siteInsert.SetField("name", siteName); 

 

// Relate the site to the address record 

siteInsert.RelateRecords("cust_primaddr2address", addressInsert); 

siteInsert.RelateRecords("cust_billaddr2address", addressInsert); 

siteInsert.RelateRecords("cust_shipaddr2address", addressInsert); 

 

// Append fields that we want to insert values into 

addressInsert.SetField("address", address1); 

addressInsert.SetField("address_2", address2); 

addressInsert.SetField("city", city); 

addressInsert.SetField("state", state); 

addressInsert.SetField("zipcode", zip); 

 

// Relate this new address to an existing state record 

addressInsert.RelateRecords("address2state_prov", stateProvRef); 

 

// Select an existing record to use as a relation for addressInsert 

stateProvRef.AppendUniqueFilter("full_name", state); 

 

// Run the query and retrieve the results 

FCGenericModifyResult[] results =  generic.Update(); 

 

The first line creates a GenericUpdateClient object. This object is used to hold the records for insert and update. The 

next section declares four InsertItem objects – each one is a data row to insert. Then, a ReferenceItem is declared. This 

represents a row already existing in the database – it is much like a Reference in Dataex syntax. 

 

The next section sets some data fields. This is followed by a relating of the contact to contact_role records. More data 

is inserted and related, and then the FCSession.GetNextNumScheme method is called to get the site_id field. Remember 

that all useful methods of FCFL are made available to you with Web Services. The site and address records are 

populated, and then the overall GenericUpdateClient object is updated, which causes all of the records to be inserted 

and related properly in a bulk. 

 



First View, Vol. 4, Num. 4  Page 8 

Putting it all Together 

This article provides a very quick introduction to the First Choice Web Services. Even with the brief nature of this 

article we are sure that you can see the power and flexibility of the Web Services. You can integrate them into any 

program or environment you wish. While they are particularly powerful when called from web pages, they can also 

be added to command-line or LAN-based applications. In truth, what you can do with them is virtually unlimited 

 

 

Product News: Fall Releases Greatly Expand FCS Solutions 
 

We were tempted to dedicate this entire issue to the recent set of product releases from First Choice. Certainly, we 

have written and shipped a great many in the past few months. We believe that these products will greatly assist Clarify 

customers in improving their environments and daily work. This section provides a brief highlight on what is currently 

available and use upcoming issues to provide more detail on each product. In the meantime, please contact us at 

sales@fchoice.com to learn more. 

 

Expanded Application and fcClient Support 

We have recently released fcClient 3.5, which offers substantial new functionality and performance. In the application 

area, we have added new logistics capabilities to Parts Requests for Depot Repair and Spares Manager. Pick, Fulfill, 

Ship, and Receive actions are now supported in the FCS thin client as well as the ability to create and update depot 

repair records, including adding labor and material entries and ECO’s.  

 

Additionally, we have added the underlying API toolkits for Field Operations and Depot Repair as well as upgraded 

the API toolkits for ClearContracts, ClearQuality, ClearSupport, and Interfaces to address a number of minor 

enhancements.  

 

In response to customer requests for a cleaner Windows environment for fcClient we have also included a new 

Windows Manager for fcClient that allows any open window to be viewed and fronted from the console as well as the 

option to close all open windows (automatically when logging out). fcClient 3.5 contains over one hundred 

enhancements to improve your daily work – download the user guide for more details. 

 

State of the Art Integration of Clarify with Other Applications 

The ability to interface with Clarify has been significantly enhanced with the release of First Choice’s Web Services 

and Dot Net Wrappers (fcws 1.0). The Technical Corner article found in this edition of First View provides more 

details in the applicability and usage of these powerful services. 

 

First Technical Preview of .NET Architecture Now Available 

The first two releases of our FCFL.NET architecture (technical preview and beta) are now available for FCFL.NET 

subscription customers and selected partners. This release is targeted towards customers and partners who wish to 

exercise the First Choice architecture through custom .NET applications. The GA release of FCFL.NET (due within 

the next month) will include a compatibility layer permitting existing applications and fcClients to utilize FCFL.NET 

technology without modifications. 

 

Upcoming 2004 Releases 
 

The Following are Some of the Releases We are Working On for the End of 2004, and for the First Two Weeks 

of 2005: 

Version 1.0 of FCFL.NET will be released late in 2004. FCFL.NET is a “from the ground up” implementation of 

our superior FCFL environment, written in C# for the .NET world. FCFL.NET is object-oriented, allowing for easy 

subclassing and customization. It is multi-threaded, making FCFL.NET significantly more scalable, and better 

performing than FCFL (which is already the fastest solution available to customers today).  

 

The “Compatibility Layer” allows existing FCFL-based applications (including fcClient) to work with FCFL.NET 

without having to change a single web form!! Hundreds of other improvements (a license manager and an improved 

logging manager, to name just two) will make this the development environment of choice for all Clarify customers. 

Contact us at sales@fchoice.com for more details about getting a copy of FCFL.NET 

 

mailto:sales@fchoice.com
mailto:sales@fchoice.com


First View, Vol. 4, Num. 4  Page 9 

First Choice will soon ship the newest version of our newest API toolkit: FCFL API Toolkit for ClearSales. This 

toolkit allows customers to add Sales functionality (Quote, Action Item, Opportunity, Lead, and more) to their 

applications quickly and easily. 

 

Later this year, First Choice will add the first fcClient functionality in the Sales area. The first piece of functionality 

to be implemented will be Action Items. These will be full-featured Action Items that contain all of the bells and 

whistles you have come to expect from First Choice. They will also integrate fully with the console, Recent Objects, 

fcQuery, and more. Towards the end of the year, First Choice will also release a copy of fcClient with our new Account 

Management functionality. 

 

fcAdmin is being greatly expanded. Soon you will be able to administer all of the following graphically from fcAdmin 

(in addition to the many GUIs available to you today): Geography (Countries, States, Time Zones, Currencies, and 

Zipcodes), Lists (Status Codes and Clarify Lists), ClearLogistics Transitions, Configuration Items, Parts (Part 

Domains, Part Numbers, Mod Levels, and more). 

 

 

Employee Profile: Chad Levert 
 

We are extremely pleased to welcome Chad to First Choice. He’ll be 

managing our many implementation and professional services 

engagements. Even though our environment is very straightforward to 

implement, especially with the tools we have made available to assist 

in migration of existing customizations, there is typically a short 

implementation process to complete. Chad’s role is to oversee these 

implementation processes and manage the appropriate resources 

(internal resources and external contractors) to ensure a successful 

customer experience. 

 

Prior to joining First Choice, Chad served in several different capacities 

at Dell Computers, from web programmer and project manager to 

systems analyst, architect, and development manager. The last two 

years at Dell he served as the development manager for the high traffic 

Electronics and Accessories website 

(http://accessories.us.dell.com/sna/default.aspx?c=us&l=en&cs=19). 

During that time Chad was responsible for delivering several large 

projects including a merge of the Premier and e-commerce websites, 

and two COM/.NET conversions. 

 

Chad served in the 10th mountain infantry unit during the Gulf War, and then went on to graduate from Southwest 

Texas State University, studying Computer Science and Business Administration. After graduation he had a brief stint 

at the US Department of Veteran Affairs as an application programmer before joining Dell.  

 

Personal interests include riding motocross, softball, and competing in the Texas Water Safari (a three day, 260 mile 

canoe race). 

 

 

Sales and Marketing News: New Options for Acquiring First Choice Products  
 

Along with the many new products we’ve just released, we have developed a number of new licensing options. These 

options are based on customer feedback concerning the challenge they face of having to move their applications 

forward while still working under constrained Capital Investment budgets. 

 

The First Choice product development philosophy has always been to build products that products offer customers 

tremendous flexibility in meeting their application needs. Offering customers similar flexibility in licensing only 

makes sense; so we are pleased to announce a variety of licensing options.  

 

http://accessories.us.dell.com/sna/default.aspx?c=us&l=en&cs=19


First View, Vol. 4, Num. 4  Page 10 

First, we continue to offer traditional enterprise licensing based on concurrent connections and installed thin client 

applications. With the implementation of our .NET architecture, licensing is extremely easy to manage, highly tailored, 

and based on need. In keeping with our value based pricing objectives we have maintained price points well below 

alternative solutions. Enterprise licensing is typically considered a capital expenditure and is accompanied by an 

annual support and maintenance agreement. 

 

Second, we now offer a modified enterprise-licensing model. This is an interesting option that is particularly attractive 

to customers who have a reduced dependency on the classic client and who are moving to a thin client environment. 

First Choice products operate on any version of Clarify and virtually any database system. Further we can provide 

Clarify Help Desk support as part of our offering. 

 

Third, we anticipate an aggressive roll-out of products based on our .NET architecture, including a complete Amdocs 

replacement that includes a broad suite of clients, data model, administration tools, and business process services - 

e.g. Rules Manager alternative and advanced email management. We expect the new product suite to be rapidly 

adopted by existing Clarify users who want more flexibility, greater performance and scalability, and lower cost of 

ownership. Customers have already asked us how to license these alternatives when available. To make the transition 

as simple as possible we are offering a subscription option: that for an annual fee subscription customers can receive 

the .NET based products and technologies necessary to implement First Choice’s advanced .NET platform, or even a 

complete a migration to a 100% First Choice environment. 

 

Finally, our new products and architecture provide a state of the art customer support solution that will be attractive 

to both new (non-Clarify) customers as well as existing Clarify users. Industry research reveals a significant shift is 

occurring in the CRM market towards solutions delivered as Internet-based services. By licensing applications as a 

service, rather than as a traditional enterprise license, customers can lower the cost of entry, reduce IT expense, and 

more rapidly adapt to changing needs. In the near future First Choice will offer our thin client solutions as a hosted 

service, as well as premise based solution, with pricing based on a straightforward cost per agent/per month. With no 

dependence upon Clarify components this option will be applicable to any company looking for highly effective 

customer support solutions.  

 

Now, more than ever, acquiring First Choice solutions couldn’t be easier. 

 

 

 

 

 

 

 

 

Clarify is a registered trademark of Amdocs Ltd. 

 


